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Abstract

The current breed of WWW search engines are
systems which use agents to find and download text
based information from the distributed multimedia
database known as the World Wide Web.  These search
engines are well developed with respect to text, but
typically ignore image and video content.  In this paper
we discuss a system which uses agents to search
distributed multimedia databases over the world wide
web.  Operational goals of the system include the
following: accessibility by anyone with a World Wide
Web connection; low Response time; and usable by
non-artists.  Toward these ends, we developed the
ImageScape system
(http://ind134a.wi.leidenuniv.nl:2001) which includes
MPEG based methods for compressing large image
databases, optimal agents for analysis and downloading
based on utility of the site information, and information
theoretic techniques for sketch and representative
image icon matching.

1  Introduction

Image and video databases are growing quickly
due to a multitude of reasons.  International digital
library initiatives for digitizing and organizing paper
and film libraries exist throughout the world.  The
WWW is becoming ubiquitous if it is not already.  CD-
ROMs are standard on all PCs and Digital Versatile
Disks (DVD) have reached the store shelves.

However, the standard WWW search engines such
as AltaVista and Lycos ignore nontext information.  In
this paper, we describe a search engine for images on
the WWW.  We cover the web robot which downloads
the images, the Java based sketch interface, and the

algorithm used to index the WWW color image
database at Leiden.  In Figure 1, we show
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Figure 1.  A diagram of ImageScape, a multimedia
WWW search engine.

the fundamental relationships between the server,
client, and the WWW.  Agents are continuously sent to
the WWW to retrieve images and videos with
associated text information.  When an image is brought
to the server, it is analyzed for useful features, and then
a thumbnail of the image and the features are stored in
a relational database.  When a user sends an image
query from a WWW browser/client program, the query
is compressed, sent to the server, and matched against
the database.  The best matches are then sent back to
the WWW browser/client program to be displayed to
the user.



In this section we gave an overview of the entire
system.  However, there are some interesting questions:
(i)  How can we maximize the download rate; (ii)
When the images are downloaded, how can we
maximize storage per gigabyte?;  and (iii)  For a given
image database, how can we search for images?  These
questions are addressed in the next sections.

2 Optimal UtilityAgents

What is an agent? There are several types of agents
which are classified based upon functionality and
sophistication.  A mobile agent is a software program
which can hop between computers, retaining its
internal state.  An intelligent agent is a software robot
which can perform sophisticated missions based on a
knowledge base.  These agents vary in their complexity
from reflexive agents, which simply follow a rule base,
to utility agents which perform analysis of the
environmental input with their own database and assess
the utility or importance of different actions.  Note that
a mobile agent does not have to be intelligent and an
intelligent agent does not have to be mobile. For more
information, see Petrie [1996] and also Braham and
Comerford [1997].

Multiple agent programs need to have their
activities coordinated.  The program which does this is
called the manager or M.  The tasks are split up
between M and the agents in that M assigns a list of
goals for each agent.  The agent can decide the order in
which to achieve the goals depending upon the current
circumstances.  M does the global planning while the
agents perform local planning based upon the current
state of the environment.

One significant problem in searching distributed
databases such as the WWW is how to maximize the
download rate of useful information.  Our approach
was to optimize the use of the network, WWW site
servers, the local workstation servers, and the need for
the information.  So, the question is what relevant
information or inputs does M have and what choices
can it make?  One important factor is the bandwidth at
a particular date/time in the past.  A heuristic use of
this factor would mean that the agent downloads
information from a WWW site when the bandwidth is
near maximum.  Note that the heuristic uses are given
to show the relevance of the factor, but they are not
used in our system.  However important the bandwidth
is, it is also necessary to account for the previous
growth of the site.  Some sites are growing rapidly,
while others are stable for long periods of time.
Another heuristic is to give less importance to more

stable sites.  A variation on the growth of the site is the
change in the site information.  For example,
newspaper related sites have the same general site
structure over months, but the content in terms of
articles changes daily.  Furthermore, we need to
address the question of how useful is the information at
a site.  A rough measurement of utility is made by
counting the number of times a site occurs in WWW
lists which describe the Top N sites.  Heuristically, sites
which are voted as top sites most often should be
checked more frequently.
There are three states which an agent can be in

S1 Agent doing nothing & without data
S2 Agent waiting or downloading data
S3 Agent doing nothing  & with data

And three processes which link S1, S2, and S3

P1 Send agent
P2 Agent waiting or downloading data
P3 Read agent

Figure 2 describes the relationships between states and
processes. M’s actions/controls are

(1) Choose P1;
(2) Choose P3;
(3) Terminate an agent

while an agent can choose which URL to download
from a list specified by M.
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Figure 2.  The relationship between the states and
processes.

What is the optimal action given the input information?
Since this is essentially a maximization problem, both
M and the agents were modeled after a conjugate
gradient maximization algorithm in that they greedily
maximize the download rate of useful information.

In summary, the process of searching the WWW
was split between a manager, M and agents.  M has
knowledge of global information about the other agents
as well as the previous bandwidth to a site and the
previous site changes.  The agents do not know the



activities of the other agents, but they do have access to
the current bandwidth and site changes in addition to
the previous bandwidth and site growth information.
Both M and the agents were cast as optimization
problems where the goal is to maximize the download
rate.  This eliminated the need to create complex
heuristics.

2.2 Image Database Compression

When the agents bring back images, we reduce
them to thumbnails and delete the originals.  This
brings to mind the problem of how to maximize the
number of thumbnails per gigabyte?  Our general
approach was modeled after MPEG video compression.
In our coverage, we assume familiarity with JPEG and
MPEG encoding.  Please refer to Tekalp [1995]  for
extensive descriptions.  Specifically, we implemented
three database compression algorithms.  First, if the
new image is a copy of a database image, then we only
store a pointer to the database image.  Second, if the
new image is a copy of a database image, but with
small changes such as company logos or writing, we
subtract the images and store a pointer to the database
image and the JPEG compressed difference image.
These two methods are particularly useful for the
WWW because of the large number of image copies
between sites, especially icons.

The third and most interesting method is similar to
MPEG video compression.  In MPEG video
compression, the consecutive frames are often
redundant, so the frames are often split into NxN
blocks, and if a previous or future frame has a similar
block, then only a pointer is stored.  In a very large
image database of  hundreds of thousands to millions of
images, it is not difficult to conceive that there could be
significant redundancy between the database images.
Whether it is the color of the sky or the texture of the
trees, there do seem to be commonly occurring features
in images.  Thus, for the database compression, we split
the image into NxN blocks, and search for similar
blocks in other images.  If a similar block is found then
we only store the pointer to the block.  This
compression technique is useless for small picture
collections (unless they are very similar images), but
becomes increasingly useful for larger picture
databases.

The thumbnails in our collection are designed on
average to take approximately 1K per image using the
JPEG quality control.  For our WWW database of 7
million images, we were able to reduce the disk usage
from approximately 7 gigabytes to 2.6 gigabytes.  The

current limitation in our system is the hard disk
bandwidth.  In order to reduce the image loading, we
only checked images which have similar aspect ratios
and similar color histograms.  Thus, the 2.6 gigabytes
is only an upper bound since we did not cross-index the
entire database.

2.3 Matching

  There are two fundamentally different ways of
specifying image content in our interface.  The user can
draw a sketch or place representative image icons
which refer to objects such as human faces, sand, trees,
water, and sky.  In order to find these objects, an
algorithm for detection of objects in complex
backgrounds is necessary.  Representative work
includes  Yang and Huang [1994], who used a
constraint based image pyramid.  This method was
especially computationally efficient due to the
pyramidal image representation.  Rowley and Kanade
[1995] compared different strategies in using neural
nets for detection of faces. Sung and Poggio [1995]
synthesized 6 face and 6 nonface clusters using
elliptical k-means clustering.

The object detection method used for this system
was from Lew and Huijsmans [1996].  The candidate
features for our system included the color, gradient,
Laplacian, and texture information from every pixel of
multiple scales. The method uses the Kullback relative
information to find the 256 features which will
minimize the misdetection rate.  The primary reason
why we used the Kullback method is that it is easily
scalable with respect to computational efficiency.  If a
faster or slower server is used, then the number of
features can be adjusted to reach an acceptable response
time.

Shape matching between the contours of the image
database and the query image is one of the fundamental
areas in computer vision and thus there are a large
number of useful interesting techniques. Reviewing all
of the shape matching algorithms is beyond the scope
of this paper.  For a good but not necessarily
comprehensive coverage, see Gudivada and Raghavan
[1995]; Del Bimbo and Pala [1997]; and Flickner, et.
al. [1995].  Some recent shape matching techniques are
directed toward multiscale shape matching
[Mokhtarian, Abbasi, and Kittler  1996; and Del Bimbo
and Pala 1996]  In our image search engine, we need to
emphasize computational efficiency and roughness of
the sketches.

There are a variety of problems with respect to the
sketch matching. These include but are not limited to



(1) Is spatial placement of the objects in the sketch
essential?  If we draw a circle in the lower part of the
canvas, are we looking for any circle or just circles in
the lower section? and  (2) How important is the
background relative to the foreground (the sketch)?
Regarding question (2) Suppose that the user sketches a
ball, and that there exist an image with a ball against a
plain background; and an image with a ball next to a
little boy.  Which image should be  considered to be the
better match?  A less intuitive side-effect of question
(2) is that if we implement a straightforward sum of
squared difference error, then blank images would often
match to the sketch image because most of the sketch
image is blank. Note that many of the previous shape
matching methods such as FFT coefficients assume that
the image has been segmented, which is not currently a
reliable automatic procedure.

There is no single answer to these questions
because each user will have different preferences.  In
our matching algorithm, we assume that the user is
drawing objects near to where he would like them to be,
thus we enforce spatial positioning.

One interesting possibility would be to directly use
the gradient magnitude instead of the contours.  This
possibility has the problem that it is not known at what
edge strength the user is drawing the contours of the
sketch.  Thus we chose not to persue this direction until
we enhance the sketch interface with variable width
lines.

Assuming that the user is specifying the contour of
an object, then it is reasonable to try to match the
sketch with the contour map of an image.  For this
implementation we chose to use the Sobel operator
[Ballard and Brown 1982] in conjunction with a
Gaussian blurring filter for finding the edge/contour
maps.  Edges have the advantages that they reduce
dependency on image contrast and varying lighting
effects.

Another consideration is which scale should be
used for the matching? Regarding computational
efficiency, as the resolution of the image is halved, the
amount of computational resources required is
quartered. Furthermore, as the resolution of the image
decreases, we gain more translation invariance.
However, as the resolution increases, the
discriminability of the contour maps increases giving us
potentially more accurate results.  From our own
feasibility experiments, the resolution of 20x20 was the
minimal resolution in which a wide variety of sketches
could be detected.  However, the computational aspects
still required further enhancement.

Trigrams [Huijsmans, et al. 1996] were postulated
as the image equivalent of textual trigrams in fast text
matching.  They are related to Linear Binary Patterns
(LBP) [Ojala, et al. 1996, Wang and He 1990], but are
founded on the edge map of an image instead of
intensity space. Trigrams are based on 3x3 texel
patterns which occur in edge maps of images.  If each
pixel in the 3x3 texel is considered to be a single binary
digit, then there are 9 binary digits which corresponds
to 29 or 512 unique trigrams.  Intuitively, each trigram
corresponds to one unique 3x3 edge mask.

The discriminability power of trigrams was found
to be sufficient even on specialized image databases
such as the Leiden 19th Century Portrait Database
[Huijsmans, et al. 1996].  Furthermore,  with respect to
sophitication of the method, the trigrams were found to
have comparable accuracy to the Virage
datablade[Huijsmans, Lew, and Denteneer 1997],
which is an eminent commercial product for finding
similar images.  Thus, we used the trigram method as a
front-end to the 20x20 template matching by finding
the top 1 percent matches (in our database this was
1000 matches) using the trigrams and then resorting
using the Kullback relative information matching
described next.

In order to allow the user to adjust the effect of the
background, we examined the error due to mismatching
sketch pixels, Es, and the error due to mismatching
background pixels, En.  A user selectable weight, w, is
selected so that the effect of the background can be
completely removed if desired by the user.  The formula
is shown below:

E = w*Es + (1-w)*En

How do we determine Es and En?  One possibility
is to count the number of sketch pixels which coincide
with the database edge image, divide by the total
number of edge pixels and subtract from one.  This
would be the percentage sketch pixel error.  However,
this method has the drawback that it does not have
account for uniformity of matching coverage.
Uniformity of matching coverage refers to the human
visual system preference for a database image which
covers the query sketch uniformly as oppose to
partially.  An example is shown in Figure 3 where DB
Image 1 would match better to the query if we only
count matching pixels, but DB Image 2 “looks” more
like a V than DB Image 1

It has already been found that application of the
Kullback [1959] relative information [Lew and Huang
1996], toward finding the most informative pixels of an
image results in a weighting matrix which reduces the
weight of neighboring pixels.  Intuitively, this occurs



because on average,  pixels are highly correlated, so if
the value of a particular pixel is known, then less
information is gained by searching its neighbors.  The
weighting matrix from the integration of a Markov
random field with the Kullback relative information
was found to be a logarithmic weighting of the pixel
values [Lew and Huang 1996], and this weighting
matrix was implemented for Es.

Query DB Image 1 DB Image 2

Figure 3.  Two different matches for a query:  partial
and uniform covering

 In summary, the indexing algorithm integrates the
trigram method with Kullback weighting.  The
trigrams for the database images are first computed and
stored.  When the user sketch arrives at the server, the
band-pass trigrams are computed [see Huijsmans, et al.
1996] and used to compute the top 1% matches.  At
this point, we had to decide whether spatial placement
of the object was essential.  We chose to implement
weighting by spatial placement by resorting using
Kullback templates.  The top 20 matches are shown to
the user.

Note that there is no segmentation done except for
the calculation of the trigrams.  The algorithm returns
images which have roughly the same placement of
objects as the sketch.  If the user draws a circle in the
lower part of the canvas, then we assume he is
interested in images which have circles in the lower
section.

3 Experiments

In this section, we describe experiments which
were performed to test the efficacy of the different
modules of our system.  For the image database
compression, we generated a graph of the probability of
finding a similar 16x16 block with respect to the size of
the database in Figure 4.  For this experiment, we
counted a block as similar if the average absolute
difference was less than 3% in each of the color
components.
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Figure.  4.  Probability of finding a similar (16x16)
block with respect to the number of images.

This graph states that even for image databases near
40,000 images, the probability is greater than half of
finding a suitable block for compression, and near
120,000 images, the probability is greater than 0.9.

Any object detection method creates an operating
characteristic between false alarms and misdetections.
One can have few false alarms and many misdetections,
or few misdetections and many false alarms.  As a
design decision, we chose to emphasize few false
alarms.  Note that selecting a point on the operating
characteristic is necessary in every machine detection
task. Using 1,400 ground truthed images, and a
false alarm rate of 0.05 per image, our misdetection
rates were 0.08 for sky, 0.14 for water, 0.19 for human
faces/skin, 0.26 for trees/grass, , and 0.29 for
stone/sand.  In Figures 5 and 6, image queries using the
representative image icons and their results are shown.

Figure 5.  An image query using representative image
icons, human face and trees/grass.



Figure 6.  An image query using representative image
icons, sky, sand/stone, and trees/grass.

For the sketch experiments, we created a standard
sketch probe gallery of 15 images of varying
complexity.  Four of these probe images are shown in
the results below in Figures 7 and 8.  Thirty users were
selected and each user was given one minute to sketch
each image.  Thus 450 test queries were used in the
experiment.  Since the sketch interface was designed
for nonskilled users, we only selected nonartists.  The
time limit of one minute was selected because the
sketch interface was meant for drafts, not finished nor
precise drawings.  We counted a sketch as a
misdetection if it failed to appear in the top 20 result
images. For the results in Figures 7 and 8 (see end of
article for figures), the integrated trigram/Kullback
algorithm was used to process the queries.

The misdetection rate for our probe gallery was
0.14. The majority of the misdetections occurred
because the sketch probes were not aligned near the
center of the image.  To compensate for this we are
adding an option to have the indexer automatically
center the sketch.

The response time for a test database containing
100, 000 images (the full WWW database which is
indexable by text is 7 million images.  The test database
for the sketch and image icon search algorithms is
100,000 images) and is  for a single user on an SGI
Indy (R5000, 150 MHZ) was 41 seconds for the
Kullback template algorithm, and was reduced to less
than 3 seconds for the integrated trigram/Kullback
algorithm.

In general, the subjective quality of the user
sketches was very low.  Also, when the query image
was not detected, the results were usually  intuitive via
the thresholded version of the image.  For instance, in
Figure 7(b), the planet in the 2nd row, 1st col, does
look similar to the thresholded query image.

4 Conclusions

  Current internet search engines do not allow the
inclusion of image information for queries.  This paper
describes a system for searching large distributed
multimedia databases using agent technology.  In the
course of developing the system, several problems were
addressed:  optimal utility agents, image database
compression, and visual information retrieval using
sketches and representative image icons.  The
techniques for the agents, database compression, and
sketch/icon retrieval are enhancements or adaptations
of current or published techniques.  In this article, we
presented the working system and tested it on databases
from the WWW.

World Wide Web Demo

For the sketch based search engine, use Netscape 3.0 at
URL

http://ind134a.wi.leidenuniv.nl:2001/
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(a)

(b)
Figure 7.  Search for Image: Homer (3rd row, 1st col.
in (b)).  Sketch (a) and results (b).



(a)

(b)
Figure 8.  Search for Image: Opus (2nd row, 1st col. in
(b)).  Sketch (a) and results (b)


